211 research outputs found

    Waste coffee Oil: A promising source for biodiesel production

    Full text link
    The oil from waste coffee possesses the potential as a feedstock for biodiesel production. In this study, waste coffee grounds were collected from Turkey. Then the oil was extracted from waste coffee grounds using N-hexane. The two-step acid-base catalyst transesterification process was used to produce biodiesel as the acid value of the crude oil was found higher (15.4 mgKOH/g).This was followed by an investigation of some physical and chemical properties. It was found that the properties of waste coffee biodiesel fell within the limit of ASTM standards. So the studied physicochemical properties of the waste coffee biodiesel suggest that this fuel can be used as a fuel in diesel engines

    Alkyne activation and polyhedral reorganization in benzothiazolate-capped osmium clusters on reaction with diethyl acetylenedicarboxylate (DEAD) and ethyl propiolate

    Get PDF
    The reactivity of the face-capped benzothiazolate clusters HOs3(CO)9[μ3-C7H3(R)NS] (1a, R = H; 1b, R = 2-CH3) with alkynes has been investigated. 1a reacts with DEAD at 67 °C to furnish the isomeric alkenyl clusters Os3(CO)9(μ-C7H4NS)(μ3-EtO2CCCHCO2Et) (2a and 3a). X-ray crystallographic analyses of 2a and 3a have confirmed the stereoisomeric relationship of these products and the regiospecific polyhedral expansion that follows the formal transfer of the hydride to the coordinated alkyne ligand in HOs3(CO)9(μ-C7H4NS)(2-DEAD). The significant structural differences between the two isomers, as revealed by the solid-state structures, derives from the regiospecific cleavage of one of the three Os-Os bonds in the intermediate alkenyl cluster Os3(CO)9(μ-C7H4NS)(1-EtO2CCCHCO2Et), which follows hydride transfer to the coordinated alkyne ligand in the pi compound HOs3(CO)9(μ-C7H4NS)(2-DEAD). Control experiments confirm the reversibility of the reaction leading to the formation of 2a and 3a. Whereas heating either isomer in refluxing THF or benzene affords a binary mixture containing 2a and 3a, thermolysis in refluxing toluene leads to the activation of the alkenyl ligand and formation of the new cluster Os3(CO)9(μ-C7H4NS)(μ3-EtO2CCCH2) (4). 4 was independently synthesized from 1a and ethyl propiolate at room temperature. The computed mechanisms that account for the formation of 2a and 3a are presented, along with the mechanism for the reaction of 1a with ethyl propiolate to give 4

    Social, environmental and psychological factors associated with objective physical activity levels in the over 65s

    Get PDF
    Objective: To assess physical activity levels objectively using accelerometers in community dwelling over 65 s and to examine associations with health, social, environmental and psychological factors. Design: Cross sectional survey. Setting: 17 general practices in Scotland, United Kingdom. Participants: Random sampling of over 65 s registered with the practices in four strata young-old (65–80 years), old-old (over 80 years), more affluent and less affluent groups. Main Outcome Measures: Accelerometry counts of activity per day. Associations between activity and Theory of Planned Behaviour variables, the physical environment, health, wellbeing and demographic variables were examined with multiple regression analysis and multilevel modelling. Results: 547 older people (mean (SD) age 79(8) years, 54% female) were analysed representing 94% of those surveyed. Accelerometry counts were highest in the affluent younger group, followed by the deprived younger group, with lowest levels in the deprived over 80 s group. Multiple regression analysis showed that lower age, higher perceived behavioural control, the physical function subscale of SF-36, and having someone nearby to turn to were all independently associated with higher physical activity levels (R2 = 0.32). In addition, hours of sunshine were independently significantly associated with greater physical activity in a multilevel model. Conclusions: Other than age and hours of sunlight, the variables identified are modifiable, and provide a strong basis for the future development of novel multidimensional interventions aimed at increasing activity participation in later life.Publisher PDFPeer reviewe

    Patterns of default mode network deactivation in obsessive compulsive disorder

    Get PDF
    The objective of the present study was to research the patterns of Default Mode Network (DMN) deactivation in Obsessive Compulsive Disorder (OCD) in the transition between a resting and a non-rest emotional condition. Twenty-seven participants, 15 diagnosed with OCD and 12 healthy controls (HC), underwent a functional neuroimaging paradigm in which DMN brain activation in a resting condition was contrasted with activity during a non-rest condition consisting in the presentation of emotionally pleasant and unpleasant images. Results showed that HC, when compared with OCD, had a significant deactivation in two anterior nodes of the DMN (medial frontal and superior frontal) in the non-rest pleasant stimuli condition. Additional analysis for the whole brain, contrasting the resting condition with all the non-rest conditions grouped together, showed that, compared with OCD, HC had a significantly deactivation of a widespread brain network (superior frontal, insula, middle and superior temporal, putamen, lingual, cuneus, and cerebellum). Concluding, the present study found that OCD patients had difficulties with the deactivation of DMN even when the non-rest condition includes the presentation of emotional provoking stimuli, particularly evident for images with pleasant content.The first author was funded by the Brazilian National Counsel for Scientific and Technological Development (CNPq) as a Special Visiting Researcher of the Science Without Borders program (grant number: 401143/20147). This study was partially conducted at the Neuropsychophysiology Lab from the Psychology Research Centre (UID/PSI/01662/2013), University of Minho, and supported by the Portuguese Foundation for Science and Technology and the Portuguese Ministry of Science, Technology and Higher Education through national funds and co-financed by FEDER through COMPETE2020 under the PT2020 Partnership Agreement (POCI-01-0145FEDER-007653).info:eu-repo/semantics/publishedVersio

    A Study of Nuclear Transcription Factor-Kappa B in Childhood Autism

    Get PDF
    BACKGROUND: Several children with autism show regression in language and social development while maintaining normal motor milestones. A clear period of normal development followed by regression and subsequent improvement with treatment, suggests a multifactorial etiology. The role of inflammation in autism is now a major area of study. Viral and bacterial infections, hypoxia, or medication could affect both foetus and infant. These stressors could upregulate transcription factors like nuclear factor kappa B (NF-κB), a master switch for many genes including some implicated in autism like tumor necrosis factor (TNF). On this hypothesis, it was proposed to determine NF-κB in children with autism. METHODS: Peripheral blood samples of 67 children with autism and 29 control children were evaluated for NF-κB using electrophoretic mobility shift assay (EMSA). A phosphor imaging technique was used to quantify values. The fold increase over the control sample was calculated and statistical analysis was carried out using SPSS 15. RESULTS: We have noted significant increase in NF-κB DNA binding activity in peripheral blood samples of children with autism. When the fold increase of NF-κB in cases (n = 67) was compared with that of controls (n = 29), there was a significant difference (3.14 vs. 1.40, respectively; p<0.02). CONCLUSION: This finding has immense value in understanding many of the known biochemical changes reported in autism. As NF-κB is a response to stressors of several kinds and a master switch for many genes, autism may then arise at least in part from an NF-κB pathway gone awry

    Bcl11b sets pro-T cell fate by site-specific cofactor recruitment and by repressing Id2 and Zbtb16

    Get PDF
    Multipotent progenitor cells confirm their T cell–lineage identity in the CD4^–CD8^– double-negative (DN) pro-T cell DN2 stages, when expression of the essential transcription factor Bcl11b begins. In vivo and in vitro stage-specific deletions globally identified Bcl11b-controlled target genes in pro-T cells. Proteomics analysis revealed that Bcl11b associated with multiple cofactors and that its direct action was needed to recruit those cofactors to selective target sites. Regions near functionally regulated target genes showed enrichment for those sites of Bcl11b-dependent recruitment of cofactors, and deletion of individual cofactors relieved the repression of many genes normally repressed by Bcl11b. Runx1 collaborated with Bcl11b most frequently for both activation and repression. In parallel, Bcl11b indirectly regulated a subset of target genes by a gene network circuit via the transcription inhibitor Id2 (encoded by Id2) and transcription factor PLZF (encoded by Zbtb16); Id2 and Zbtb16 were directly repressed by Bcl11b, and Id2 and PLZF controlled distinct alternative programs. Thus, our study defines the molecular basis of direct and indirect Bcl11b actions that promote T cell identity and block alternative potentials
    • …
    corecore